Foraging Challenges: Unsuitable Prey and Limited Information
نویسنده
چکیده
Adviser: Brigitte Tenhumberg Food acquisition is a complicated task. The profitability of potential food items depends on numerous factors, including the spatial distribution, probability of detection and capture, and suitability of the food. Animals faced with such challenges can use relatively simple mechanisms to maximize foraging efficiency. However, mechanisms that maximize foraging efficiency under some ecological conditions (e.g., prey scarcity) may produce ostensibly suboptimal behavior under different ecological conditions (e.g., prey abundance). In the work presented here, we explore two facets of foraging: (1) consuming unsuitable prey, and (2) searching for resources with limited information about resource location. To explore the consequences of consuming unsuitable prey on predator behavior, we first measured the suitability of two aphid species, black bean aphids and pea aphids, for a native predatory insect, the convergent ladybird beetle. Ladybird larvae had lower larval survival, longer developmental times, and lower adult weights on a diet of bean than pea aphids. We found that ladybird larvae killed bean aphids even if pea aphids were abundant, presumably because bean aphids were easier to capture than the pea aphids. Consumption of even a single bean aphid had pronounced short-term (< 1 day) effects on predator behavior. Ladybird larvae had longer handling times, longer bouts of inactivity, shorter bouts of intensive search, and lower patch-leaving tendencies after eating a bean aphid than after eating a pea aphid. The general lethargy from eating bean aphids may reduce the foraging efficiency of ladybird larvae. We built a simulation model to explore the performance of composite search strategies on landscapes where resource distributions ranged from dispersed to clumped.
منابع مشابه
Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency
Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the developmen...
متن کاملDiet Choices of Blue Jays (Cyanocitta cristata) as a Function of Time Spent Foraging
Optimal diet theory predicts choices among prey types. With sequential prey encounters, less profitable prey types may be rejected immediately because rejecting the prey item at hand increases the probability of encountering more profitable types. However, Lucas (1985) argued that at the end of a foraging bout, all encountered prey types should be accepted because the opportunity to encounter m...
متن کاملHorseshoe bats make adaptive prey-selection decisions, informed by echo cues.
Foragers base their prey-selection decisions on the information acquired by the sensory systems. In bats that use echolocation to find prey in darkness, it is not clear whether the specialized diet, as sometimes found by faecal analysis, is a result of active decision-making or rather of biased sensory information. Here, we tested whether greater horseshoe bats decide economically when to attac...
متن کاملHigh feeding costs limit dive time in the largest whales.
Large body size usually extends dive duration in air-breathing vertebrates. However, the two largest predators on earth, the blue whale (Balaenoptera musculus) and the fin whale (B. physalus), perform short dives for their size. Here, we test the hypothesis that the foraging behavior of these two species (lunge-feeding) is energetically expensive and limits their dive duration. We estimated the...
متن کاملLIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING
In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...
متن کامل